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Quantum Chaos vs Integrable Systems
We can consider the movement of a billiard ball across a domain. 

Integrable systems (lots of patterns). A slight change in direction does 
not greatly change the trajectory.

Chaotic Systems (no patterns). A slight change in coordinates leads to 
a vastly different path.
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Quantum Unique Ergodicity
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Discrete Graphs as a Model 
for Quantum Chaos
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Adjacency Matrix

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0
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Regularity

   regular non-regular
• Often, for simplicity, we will assume our graph is regular, as it 

gives us our top eigenvector and eigenvalue. 
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Discrete Chaos
• Recall that chaos means equidistribution of eigenfunctions.
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Discrete Graphs as a Model 
for Quantum Chaos
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Quantum Ergodicity
• [Anantharaman-Le Masson ‘15] An analogous result to Shnirelman’s 

theorem is true.
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Quantum Ergodicity

• Any partition divides almost every eigenvector almost evenly
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Quantum Ergodicity
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Expansion
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Random Walks
• The expansion of a graph tells us how well the graph approximates 

the complete graph. It also tells us how quickly a random walk 
reaches its limiting distribution.
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Random Walks
• The expansion of a graph tells us how well the graph approximates 

the complete graph. It also tells us how quickly a random walk 
reaches its limiting distribution.

• As I continue to apply adjacency matrix, by the power method, I 
approach my top eigenvector. This tells us the rate at which I 
approach it. 

• Because of it being used as the rapidity of the random walk, 
expansion is key to Markov Chain Monte Carlo and other algorithms.



28

Quantum Ergodicity
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Girth
• There are no short cycles

• Same condition as was seen in the previous results (Brooks-
Lindenstrauss, Ganguly-Srivastava)
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Girth
• Walks mix optimally quickly on a local scale.
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Removing Conditions
• [Anantharaman-Le Masson 2015] – “Condition (EXP) replaces the 

ergodicity assumption in the usual quantum ergodicity theorem.”

• Spectral gap on a manifold gives rate of exponential mixing of 
geodesic flow.

• As ergodicity is the only requirement in Shnirelman’s theorem, can 
we remove the girth requirement of the discrete version?

• No!
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Expansion by itself
• [M ‘22] There is an infinite family of graphs that satisfy expansion but 

are not high girth, and violate quantum ergodicity.

• Namely, we can partition the vertices into two sets, such that many 
eigenvectors are uneven across these sets. 
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Expansion by itself
• The Cartesian product expands each vertex into a copy of a graph.

• Because of the nature of the Cartesian product, and because the 
square has localized eigenvectors, this larger graph also has 
localized eigenvectors (the same localization).
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Expansion by itself
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Girth by itself
• [M ‘22] Girth is also not enough by itself to imply quantum ergodicity. 
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Takeaways
• Perhaps to have ergodicity of geodesic flow is not equivalent to 

expansion, we must consider it on a local scale as well, which is 
given by girth.

• Without one of expansion or girth, we can create large scale 
patterns that we can take advantage of in the eigenvector. 

• That doesn’t seem very quantum chaotic!

• If my test function avoids patterns, then perhaps the statement will 
still be true. 
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Other Delocalization
• The beauty of quantum ergodicity is the generality of the model in 

which it is true.

• Stronger delocalization results are true for more general models, but 
the hope is still to push past these barriers.
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Courant’s Nodal Domain 
Theorem
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Discrete Version
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Berry’s Conjecture to Many 
Nodal Domains
• Claim: In both continuous and discrete space, having many 

nodal domains is chaotic behavoir. 
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Result
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Outline
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Future directions
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Thank you!


