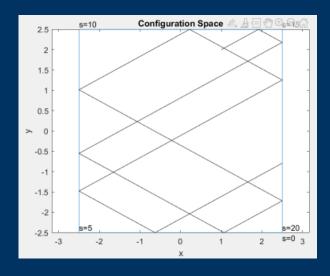
Quantum Ergodicity on Graphs

Theo McKenzie University of California, Berkeley

JMM 2022 04/06/2022

We can consider the movement of a billiard ball across a domain.

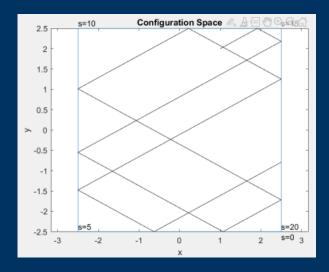
Integrable systems (lots of patterns). A slight change in direction does not greatly change the trajectory.

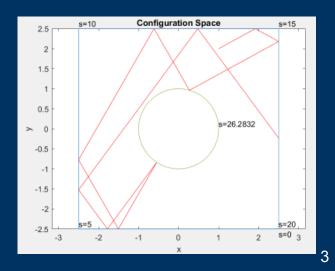


We can consider the movement of a billiard ball across a domain.

Integrable systems (lots of patterns). A slight change in direction does not greatly change the trajectory.

Chaotic Systems (no patterns). A slight change in coordinates leads to a vastly different path.

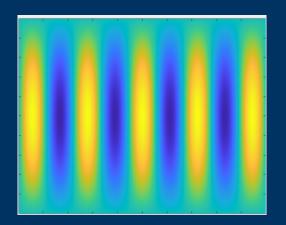




Examining functions on Riemannian manifolds with geodesics given by billiards gives a similar dichotomy. Specifically, eigenfunctions of $\Delta u = \lambda u$.

Examining functions on Riemannian manifolds with geodesics given by billiards gives a similar dichotomy. Specifically, eigenfunctions of $\Delta u = \lambda u$.

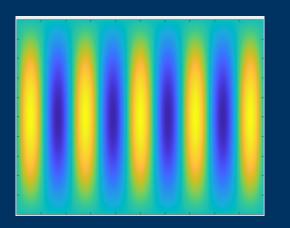
Integrable systems: We expect spectral fluctuations to be Poisson, and eigenfunctions to be localized in phase space.

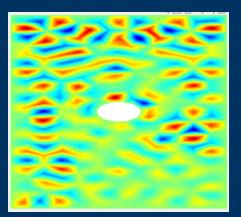


Examining functions on Riemannian manifolds with geodesics given by billiards gives a similar dichotomy. Specifically, eigenfunctions of $\Delta u = \lambda u$.

Integrable systems: We expect spectral fluctuations to be Poisson, and eigenfunctions to be localized in phase space.

Quantum chaotic systems: We expect spectral fluctuations to be those of large random matrices, and eigenfunctions to be equidistributed in phase space.





Behavior of Eigenfunctions

 [Shnirelman '74, Colin de Verdière '85, Zelditch '87] Quantum Ergodicity Theorem: A Riemannian manifold (*M*, *g*) with ergodic geodesic flow is such that almost all high energy eigenfunctions of the Laplacian are equidistributed.

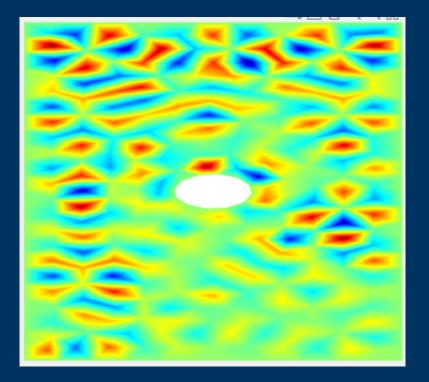
Behavior of Eigenfunctions

- [Shnirelman '74, Colin de Verdière '85, Zelditch '87] Quantum Ergodicity Theorem: A Riemannian manifold (*M*, *g*) with ergodic geodesic flow is such that almost all high energy eigenfunctions of the Laplacian are equidistributed.
- Namely, for a compact Riemannian manifold (M,g) of volume 1, consider an ordered orthonormal basis of eigenfunctions $\{\phi_k\}_{k \in N}$. If geodesic flow is ergodic w.r.t. Liouville measure, then for any continuous test function a, we have

$$\lim_{\lambda \to \infty} \frac{1}{N(\lambda)} \sum_{k, \lambda_k \le \infty} \left| \langle \phi_k, a \phi_k \rangle - \int_M a(x) d \operatorname{Vol}(x) \right|^2 \to 0.$$

Behavior of Eigenfunctions

$$\lim_{\lambda \to \infty} \frac{1}{N(\lambda)} \sum_{k, \lambda_k \le \infty} \left| \langle \phi_k, a \phi_k \rangle - \int_M a(x) d \operatorname{Vol}(x) \right|^2 \to 0$$



Quantum Unique Ergodicity

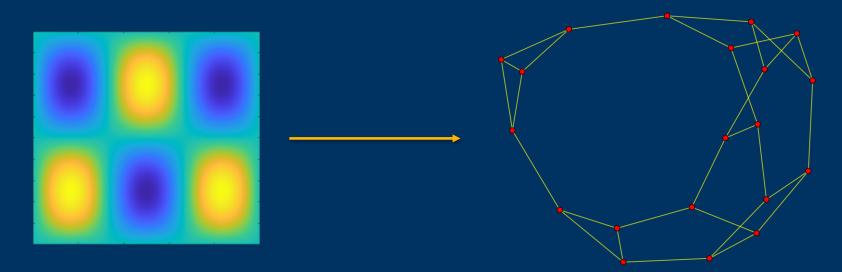
 [Rudnick-Sarnak] Quantum Unique Ergodicity Conjecture: With negative curvature,

$$\langle \phi_k, a\phi_k \rangle - \int_M a(x) d\operatorname{Vol}(x) \bigg|^2 \to 0$$

without averaging!

Discrete Graphs as a Model for Quantum Chaos

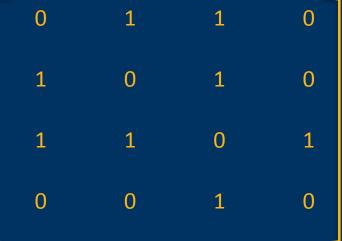
- [Kottos-Smilansky 1997,1999] Initiate using large regular graphs as a model for quantum chaos by examining the eigenvectors of the discrete Laplacian.
- Rather than take the high energy limit, we send the number of vertices to ∞.



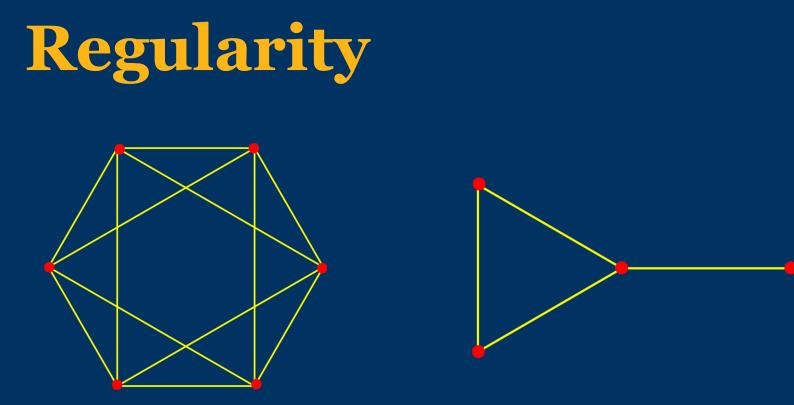
Adjacency Matrix

 Encode the walk through an "adjacency matrix" A, with rows/columns corresponding to the vertices, and putting a 1 between connected vertices.

3 4



- Note that as the matrix is symmetric, the eigenvalues are real and can be ordered $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, where *n* is the number of vertices.
- Multiplying by the matrix can be thought of as a step in the walk.
- The entry $(A^k)_{uv}$ counts to walks of length k between u and v.



regular

non-regular

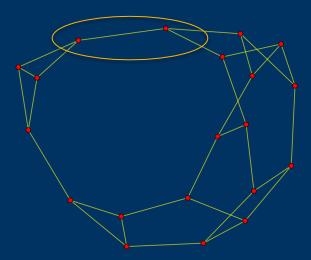
• Often, for simplicity, we will assume our graph is regular, as it gives us our top eigenvector and eigenvalue.

• Recall that chaos means equidistribution of eigenfunctions.

- Recall that chaos means equidistribution of eigenfunctions.
- (Max Born) For a normalized eigenvector ψ , we think of $\psi(v)^2$ as a distribution of mass at energy level associated with λ .

- Recall that chaos means equidistribution of eigenfunctions.
- (Max Born) For a normalized eigenvector ψ , we think of $\psi(v)^2$ as a distribution of mass at energy level associated with λ .
- New goal: show eigenvectors of graphs are equidistributed.

- Recall that chaos means equidistribution of eigenfunctions.
- (Max Born) For a normalized eigenvector ψ , we think of $\psi(v)^2$ as a distribution of mass at energy level associated with λ .
- New goal: show eigenvectors of graphs are equidistributed.
- Equivalently: show that most of the mass of the eigenvector cannot be on a small number of entries.



Discrete Graphs as a Model for Quantum Chaos

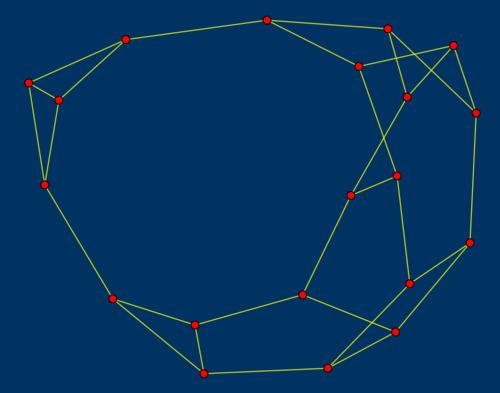
- Define ψ_S to be the projection of the vector ψ onto coordinates S.
- [Brooks-Lindenstrauss '13] For a normalized eigenvector ψ of the adjacency matrix, if my graph has no cycles of length less than k, then any set $S \in V$ such that $||\psi_S|| \ge \epsilon$ has $|S| \ge \epsilon^2 d^{c\epsilon^2 k}$.
- [Ganguly-Srivastava '21] Improve this to if $||\psi_S|| \ge \epsilon$ has $|S| \ge \epsilon d^{c\epsilon k}$.

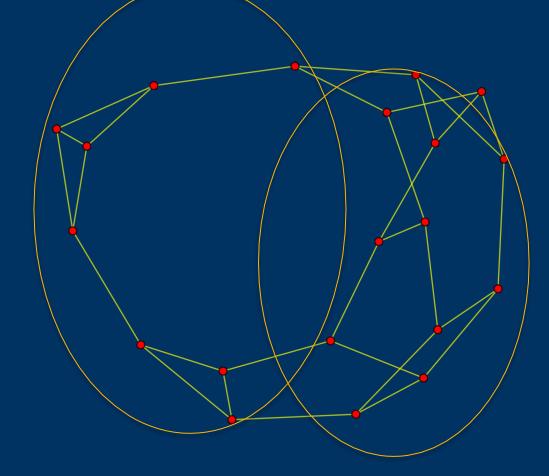
• [Anantharaman-Le Masson '15] An analogous result to Shnirelman's theorem is true.

- [Anantharaman-Le Masson '15] An analogous result to Shnirelman's theorem is true.
- Consider an infinite family of graphs (G_N)_{N∈N} with corresponding families of eigenbases ({φ^N_i})_{N∈N}. If (G_N)_{N∈N} are
- 1. Expanders
- 2. High girth

and if $a_N: V_N \to \mathbb{R}$ is uniformly bounded, then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k\in[N]}\left|\left\langle\phi_k^N,a\phi_k^N\right\rangle-\int_V a(x)d\mathrm{Vol}(x)\right|^2\to 0$$





• Any partition divides almost every eigenvector almost evenly

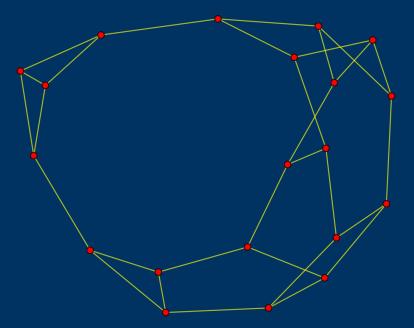
- [Anantharaman-Le Masson '15] An analogous result to Shnirelman's theorem is true.
- Consider an infinite family of graphs (G_N)_{N∈N} with corresponding families of eigenbases ({φ^N_i})_{N∈N}. If (G_N)_{N∈N} are
- 1. Expanders
- 2. High girth

And if $a_N: V_N \to \mathbb{R}$ is bounded, then we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k\in[N]}\left|\left\langle\phi_k^N,a\phi_k^N\right\rangle-\int_V a(x)d\mathrm{Vol}(x)\right|^2\to 0$$

Expansion

• A regular graph is an **expander** if all of its nontrivial eigenvalues have absolute value at most $(1 - \epsilon)d$.



Random Walks

• The expansion of a graph tells us how well the graph approximates the complete graph. It also tells us how quickly a random walk reaches its limiting distribution.

Random Walks

- The expansion of a graph tells us how well the graph approximates the complete graph. It also tells us how quickly a random walk reaches its limiting distribution.
- As I continue to apply adjacency matrix, by the power method, I approach my top eigenvector. This tells us the rate at which I approach it.

Random Walks

- The expansion of a graph tells us how well the graph approximates the complete graph. It also tells us how quickly a random walk reaches its limiting distribution.
- As I continue to apply adjacency matrix, by the power method, I approach my top eigenvector. This tells us the rate at which I approach it.
- Because of it being used as the rapidity of the random walk, expansion is key to Markov Chain Monte Carlo and other algorithms.

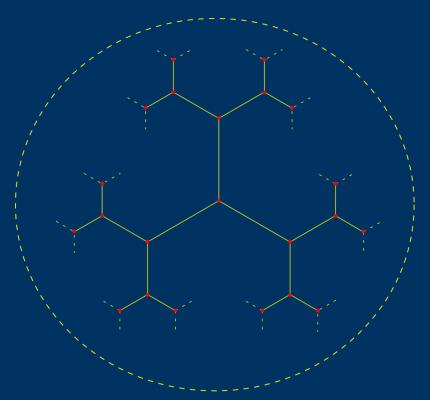
- [Anantharaman-Le Masson '15] An analogous result to Shnirelman's theorem is true.
- Consider an infinite family of graphs (G_N)_{N∈N} with corresponding families of eigenbases ({φ^N_i})_{N∈N}. If (G_N)_{N∈N} are
- 1. Expanders
- 2. High girth

And if $a_N: V_N \to \mathbb{R}$ is bounded, then we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k\in[N]}\left|\left\langle\phi_k^N,a\phi_k^N\right\rangle-\int_V a(x)d\mathrm{Vol}(x)\right|^2\to 0$$

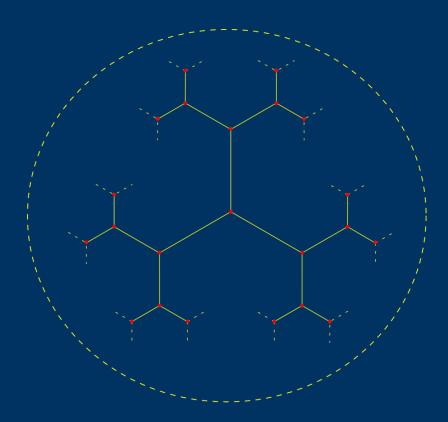
Girth

- There are no short cycles
- Same condition as was seen in the previous results (Brooks-Lindenstrauss, Ganguly-Srivastava)



Girth

• Walks mix optimally quickly on a **local scale**.



• [Anantharaman-Le Masson 2015] – "Condition (EXP) replaces the ergodicity assumption in the usual quantum ergodicity theorem."

- [Anantharaman-Le Masson 2015] "Condition (EXP) replaces the ergodicity assumption in the usual quantum ergodicity theorem."
- Spectral gap on a manifold gives rate of exponential mixing of geodesic flow.

- [Anantharaman-Le Masson 2015] "Condition (EXP) replaces the ergodicity assumption in the usual quantum ergodicity theorem."
- Spectral gap on a manifold gives rate of exponential mixing of geodesic flow.
- As ergodicity is the only requirement in Shnirelman's theorem, can we remove the girth requirement of the discrete version?

- [Anantharaman-Le Masson 2015] "Condition (EXP) replaces the ergodicity assumption in the usual quantum ergodicity theorem."
- Spectral gap on a manifold gives rate of exponential mixing of geodesic flow.
- As ergodicity is the only requirement in Shnirelman's theorem, can we remove the girth requirement of the discrete version?
- No!

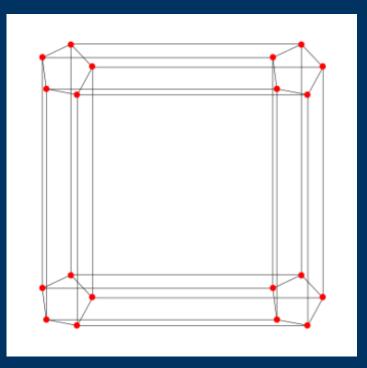
Expansion by itself

- [M '22] There is an infinite family of graphs that satisfy expansion but are not high girth, and violate quantum ergodicity.
- Namely, we can partition the vertices into two sets, such that many eigenvectors are uneven across these sets.

Expansion by itself

Expansion by itself

• The Cartesian product expands each vertex into a copy of a graph.



 Because of the nature of the Cartesian product, and because the square has localized eigenvectors, this larger graph also has localized eigenvectors (the same localization).

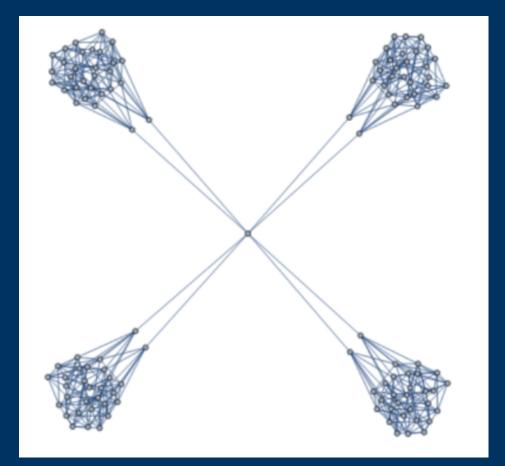
Expansion by itself

Girth by itself

• [M '22] Girth is also not enough by itself to imply quantum ergodicity.

Girth by itself

• [M '22] Girth is also not enough by itself to imply quantum ergodicity.



• Perhaps to have ergodicity of geodesic flow is not equivalent to expansion, we must consider it on a local scale as well, which is given by girth.

- Perhaps to have ergodicity of geodesic flow is not equivalent to expansion, we must consider it on a local scale as well, which is given by girth.
- Without one of expansion or girth, we can create large scale **patterns** that we can take advantage of in the eigenvector.

- Perhaps to have ergodicity of geodesic flow is not equivalent to expansion, we must consider it on a local scale as well, which is given by girth.
- Without one of expansion or girth, we can create large scale **patterns** that we can take advantage of in the eigenvector.
- That doesn't seem very quantum chaotic!

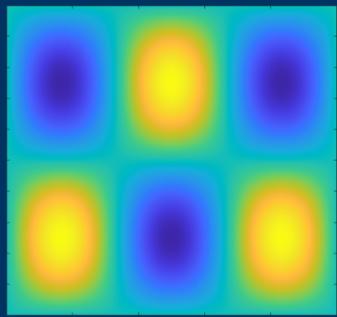
- Perhaps to have ergodicity of geodesic flow is not equivalent to expansion, we must consider it on a local scale as well, which is given by girth.
- Without one of expansion or girth, we can create large scale **patterns** that we can take advantage of in the eigenvector.
- That doesn't seem very quantum chaotic!
- If my test function avoids patterns, then perhaps the statement will still be true.

Other Delocalization

- The beauty of quantum ergodicity is the generality of the model in which it is true.
- Stronger delocalization results are true for more general models, but the hope is still to push past these barriers.

Courant's Nodal Domain Theorem

- [Courant] The zero set of the *k*th smallest Dirichlet eigenfunction of the Laplacian on a smooth bounded domain in ℝ^d partitions it into at most *k* components.
- These components, known as nodal domains, have garnered significant attention in spectral geometry and mathematical physics.



A heat map of the 6th Dirichlet eigenfunction of the square.

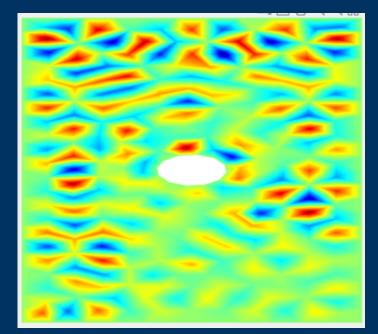
Discrete Version

• The **nodal domains** of a vector *f* on the vertices of a graph *G* are the maximal connected components of all the same sign.

• The **nodal domains** of a vector *f* on the vertices of a graph *G* are the maximal connected components of all the same sign.

Berry's Conjecture to Many Nodal Domains

• **Claim**: In both continuous and discrete space, having many nodal domains is chaotic behavoir.



Result

[Ganguly-M-Mohanty-Srivastava] Fix $d \ge 3$ and $\alpha > 0$. Then with probability $1 - o_n(1)$, every eigenvector of the adjacency matrix of a G(n, d) sampled graph with eigenvalue $\lambda \le -2\sqrt{d-2} - \alpha$ has $\Omega(n/\text{polylog}(n))$ nodal domains.

Outline

- We split into cases based on whether the eigenvector is localized or delocalized (whether the mass of the eigenvector is well spread or not).
- **Definition:** an eigenvector ψ is **delocalized** if for fixed $\epsilon, \delta > 0$, $|\{v \in V | \psi^2(v) \ge \epsilon/n\}| \ge \delta n.$
- If the eigenvector is delocalized, we can use the proximity of an eigenvector of a random regular graph to a Gaussian distribution.
- If the eigenvector is localized, then we can argue using the local structure of random regular graphs.

Future directions

- Perhaps we can similarly treat ℓ_2 delocalization vs quantum ergodicity.
- The interplay between results in continuous and discrete space remains fascinating, and not fully understood. Perhaps these techniques can shed light on the properties of manifolds.

Thank you!